Unit 2: Math Strategies

Addition Strategies		
Strategy	Example	Explanation
Counting On (One-/Two-More-Than)	$\begin{aligned} & 6+1 \\ & 2+6 \end{aligned}$	- Count on from six. - As students count on from the larger addend instead of counting all, they are ready to practice this strategy. - Helping students see the connection between counting on and adding two will help students move from counting strategies to reasoning strategies.
	$\begin{aligned} & 7+0 \\ & 0+4 \end{aligned}$	- Seven plus zero is still seven. - Some children may overgeneralize the idea that addition answers are always bigger than the addend. This strategy is a good time to address this misconception. - Create a story problem for one of the equations and use counters and a part-part whole mat to model the situation. - Post zero facts and ask, "How are the equations alike?"
Using 5 as an Anchor	$7+6$	- Students look for fives in the numbers of the problems. - For example, in $7+6$, a child may think of 7 as $5+2$ and 6 as $5+1$. The child would add $5+5$ and then the extra 2 from the 7 and the extra 1 from the 6 , adding up to 13 .
	$7+7$	- These ten facts $(0+0$ through $9+9)$ are fairly easy to learn and serve as anchors for many other facts. - Use picture cards for doubles. - Use story problems that focus on pairs of like addends.
	$4+5$	- Double the smaller number and add one or double the larger number and subtract one. - Compensate addends to double the middle number. $(6+4=5+5)$ - If no one uses near doubles strategy, then write the corresponding doubles for some of the facts and ask how these facts could help.

Combinations of Ten	$6+4$	- Most important! - Use story problems with two numbers that make 10 or that ask how many are needed to make 10. - Make a ten on a ten-frame: Place 6 counters on a ten-frame and ask, "How many more to make 10?"
Make Ten		
+0 1 2 4 5 6 7 8 9 0		- It's used for facts that have sums greater than 10.
1	(Think $8+2+$	- Students use their known facts that equal 10 and then
2 3	4)	add the rest of number onto 10 .
- \quad4 5	$9+2$	For example, students solving $8+6$ might start with
	(Think $9+1+$	the larger number and see that 8 is 2 away from 10;
	1)	therefore, they take 2 from the 6 to get 10 and then add on the remaining 4 to get 14 .
Subtraction Strategies		
Subtraction as ThinkAddition	14-7	- Helpful to begin with facts that have totals of 10 or less. - It's essential addition facts are mastered first. - Think addition using doubles: See 14-7 and think $7+7$ is 14 so $14-7=7$. - Use story problems that promote think-addition. Those that sound like addition but have a missing addend.
Decompose a Number Leading to 10	14-9	- Students use combinations of ten to help subtract quickly. - For example, in 14-9,9 can be decomposed into 4 and 5. You can take 4 away from 14 to get 10 and then take 5 away from 10 to get 5 . $\begin{aligned} & 14-4=10 \\ & 10-5=5 \end{aligned}$
Take From 10	16-8	- It works for all subtraction problems in which the starting value (minuend) is more than 10. - For example, take the problem 16-8. Students take the minuend apart into $10+6$. Subtracting from the 10 (because they know this fact), so $10-8$ is 2 . Then they add 6 back on to get 8. $\begin{gathered} 16-8=(10+6)-8 \\ 10-8=2 \\ 2+6=8 \\ \text { So } 16-8=8 \end{gathered}$

